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Abstract—The Industrial Internet era is pushing for even
more miniaturized, powerful and energy efficient devices that
seamlessly integrate to the Internet and aim to improve efficiency
of industries by monitoring, actuating or sampling data from ma-
chines, infrastructures and systems. Industrial low power wireless
protocols are one of the key enablers of that revolution but still
energy consumption is what is limiting ubiquitous deployments of
perpetual and unattended devices. The adoption of energy har-
vesting technologies is enabling autonomously powered control
and monitoring systems on Industries, Infrastructures and Cities.
Yet putting these systems together require a clear understanding
of their capabilities and behavior in order to dimension their
energy needs and to contribute to the development of a new
generation of self-powered ubiquitous devices. Therefore, this
article discusses, through a use case, the trade-off to reliably
dimension scavenger properties to network requirements and
application needs, with the main objective to enable Industries
to optimize the adoption of that technologies while keeping low
technical risks.

Index Terms—Low-power modelling, industrial wireless, en-
ergy scavenging, self-powered wireless sensor networks.

I. INTRODUCTION

INDUSTRIES are shifting to the use of wireless sensing and
actuating technologies to improve their productivity, energy

efficiency, and/or to develop new products and services [1]. In
this shift, a key enabler is the development of a new generation
of wireless devices that consume less energy, which is being
driven by new microcontrollers, new radio technologies, new
communication standards [2], [3] and enhancements to sensing
and actuating peripherals. These features, added to the ability
to seamlessly communicate over the Internet [4], boosted the
possibility to gather an unprecedented amount of data, and
lead to the emergence of numerous sensing and actuation
applications [5] [6]. Clear examples are the emergence of the
industry of wearable devices for health applications [7], smart
cities pervasive instrumentalization [8] or the improvement of
actuation and monitoring systems in the oil and gas industries.

However, making more energy efficient technologies is still
far from having those envisaged ubiquitous deployments (so
called the Internet of Things [9] [10]), which will enable
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optimal industrial operation, or will contribute to improve the
social welfare. Viable systems, especially for industry, are
those whose operational costs enable fast returns on invest-
ment, even when deployed at a large scale. Clear enablers
are a) harvesting technologies [11], since they render those
devices to be (almost) self-powered; and b) emergent low
power industrial wireless standards and technologies [12],
[13], [14], which provide IP connectivity (compatibility and
interoperability) while ensuring deterministic communication.
It is therefore logical that industry is demanding wireless
sensing equipment to be (almost) self-powered [15] [16] [17].
Yet, today, it is possible to build a device which features this
industrial wireless performance [18][19], being able to in-node
analyze the acquired data. However, energy-dimensioning the
device in order for it to meet the application requirements,
while retaining this wireless reliability, is not something
straightforward.

Note that to develop extremely low power self-sustainable
devices, a system-wide characterization and optimization is
fundamental for the development of the device at a reasonable
cost, requiring to the system designer to carefully plan the en-
ergy consumption [20]. In most of the applications, designs are
guided by worst case scenarios for hardware energy consump-
tion [21], i.e. application designers usually do not consider that
different tasks conforming the application, despite of running
concurrently, follow significantly different rates in their duty-
cycles). In this article we claim that a clear understanding
of the dependence on the different application parameters,
their interrelations, and the identification of periodic tasks that
compose the application, are essential for an efficient energy
management.

Thus, this article advises on how to early estimate the energy
consumption of the application in a realistic way. With this
aim, we illustrate through a use case a method to aid engineers
in understanding the energy life-cycle within the application,
which will enable them to determine tolerance margins and
trade-offs.

The use case proposed, on which vibrational sensing devices
are used to perform in-node modal analysis of an infrastruc-
ture, and on which an emerging low power long range wireless
technology is used to connect the infrastructure to the Internet
[22], is motivated by the fact that frequency measurements
are central to multiple industries. Vibrational sensors are used
to perform modal and harmonic analysis of the vibration of
motors, infrastructures, etc, which is fundamental to determine
the health of the machinery [23] or some infrastructure [24].

For this scenario, harvesting technologies are mature enough
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in order to be cost-effectively deployed. Thus we pay special
attention to the early dimensioning of the scavenger according
to the expected energy income, while accounting with the net-
work, sampling and processing requirements and mechanical
constrains.

The article is organized as follows. First, Section II briefly
presents a real IoT application as our case study. Then, in
Section III the article derives a general methodology from
the presented use case. In Section IV we go further with
our example and discuss about the correct dimensioning of
a self-sustainable application and address the problem of
discontinuous sources of energy, before concluding in Section
V.

II. AN IOT CASE STUDY: MONITORING POWER LINE
TOWERS

The main reasons for power transmission tower failure can
be attributed to structural damage due to corrosion, mechan-
ical damage caused by impacts, strong winds or structural
overloading due to ice and snow on the conductor lines. If
the structure begins to deteriorate, corrosion advances expo-
nentially and in a few years can oxidize the tower to the
point of failure. Furthermore, small structural damages, such
as the destruction of small traversal bars or the bending of
some structural elements of the tower, produce local defects
that can also cause the tower collapse. Critically, as the tower
deterioration accelerates, the repair time, labor and materials
cost to repair the tower increase significantly [25]. The peri-
odic inspection of transmission towers is hence necessary to
ensure the reliability of electric service to customers. Ground
inspections during the last 50 years (in the pre-IoT era) have
been only performed on a fixed schedule in very specific
areas. For this purpose a field engineer drives to a specific
tower and inspects every element of the structure. In fact, due
to the spread and large number of towers, it is difficult to
assess the structural integrity of the entire network from the
ground, and it is often necessary to conduct aerial inspections
to make a qualitative assessment. In this case, experts grade
tower conditions based only on visual assessments, but this
method is subjective and very expensive.

In short, quantifying the remaining strength and service life
of towers is still today problematic. Servicing companies and
utilities will inevitably spend valuable time inspecting towers
that would anyway keep functioning for a long time. However,
tower failures are very problematic, they produce unplanned
downtimes and energy delivery losses, which in turn may
affect businesses and population. This sort of problems can
be avoided through preventive maintenance at just the right
time driven by real-time state of health information.

In the present scenario, we envisage each tower equipped
with multiple sensing elements which provide tower’s struc-
tural state information [26]. A wireless node monitors the
health of the tower in real time [27] and solar energy is used
to power the device, taking advantage of the solar exposure
of towers.

Fig. 1. Generic Self-Powered Wireless Sensor device.

III. EARLY POWER ESTIMATION OF WIRELESS SENSOR
DEVICES

The power consumption of Industrial Wireless Sensor de-
vices (see Fig. 1) can be easily characterized because they
follow a common behavioral pattern. Data is acquired by some
sensor of the system, eventually processed in a controller unit
and finally some information sent through a wireless channel.
This process repeats over time and application’s duty cycle is
essential to control the energy consumption. The shorter the
duty cycle, the lower the average power.

As an example, in our case study, each time the device
wakes up three steps are executed: i) capture of a set of
samples; ii) computation of the acceleration spectrum for
quantitative analysis; and iii) an alarm is triggered only
when an anomaly is detected, generating a radio message. In
background, low power wireless communication technologies
require certain activity. This is because it is necessary to
communicate information about the node status and, in our
particular case, to keep track of the network synchronization.
Fig. 2 shows schematically a temporal sequence of such an
application and generalizes our use case. We consider this case
to be representative for most of industrial applications, despite
of the sensing and communication technologies being used.
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Fig. 2. Characteristic time evolution of energy usage split in different com-
ponents. The system wakes-up within TRCD intervals, captures a sequence
of NS samples at TS sampling period, and takes a time TPRC to process
the record. The average interval time between radio packets is depicted as
TMSG. Dashed line represents the average consumption.

Once determined and characterized the inherent operational
cycles of the tasks involved in the application, it becomes
necessary to estimate the energy spent within each cycle.
Obviously there are different alternatives. We propose here to
follow a semi-empiric approach originally presented in [28].
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This approach can be summarized as follows: first, the basic
blocks are measured experimentally in the real platform; then,
a model is built upon this fundamental blocks, on which
the energy of each element is averaged over the period of
repetition; finally, the total power is obtained as the sum of
each individual power contribution.

The characterization of the building blocks is carried out
statistically, i.e., taking several measurements of each contri-
bution and then using the fitting results as an input of the
proposed model.

A. Industrial Network Energy Consumption Modeling

The network energy consumption is modelled from a two
level perspective, that is, from a packet point of view and from
a network usage point of view. This entails the understanding
of the costs of sending a packet and determining the amount
of packets/activity that the application and network generate.

In our use case, we selected a low power wide area network
technology developed by Cycleo (now Semtech) which is be-
ing widely used in new Industrial and Smart City deployments.
The reason of its success can be fundamentally attributed
to its extended coverage and reduced network infrastructure
requirements. Cycleo operates in the sub GHz ISM band, and
the technology is referred as LoRa (Long Range) [22].

1) Packet characterization: LoRa’s physical layer achieves
very long range and reduced power consumption due to the use
of wide-band linear frequency modulated pulses and the use of
different spreading factors (i.e., the ratio between chip rate and
the symbol rate) to tune the range of the transmissions. The
spreading factor increase the sensitivity in the receiver side
and thus achieving and extended range, but it also provides a
mechanism to modulate energy consumption.

In the case of the Semtech Transceiver, this SF param-
eter can be configured from SF6 to SF12 (64 to 4096
chips/symbol). This ends with a reduction in bit-ratio that
affects the time needed to send the payload, and hence, the
power consumed at each transmission [22]. Fig. 3 shows
several transmission traces measured with different spreading
factors (SF7 & SF12) In this figure, it can be appreciated the
significant difference on channel usage.

It turns out that each step in the spreading factor scale
doubles the time that radio spends in active state. This suggests
that the charge per message can be characterized by an expo-
nential function in the form H(N)=O(h(N))=2N , leading to
Eq. (1) as a tentative fitting function.

Q̄
(NSF )
MSG

∼= QPY LD · 2NSF + Q̄B (1)

Fig. 4 presents a characterization of the amount of charge
used by different spreading factors. In the experiment, the
power consumption of each transmission is fitted with a
training set of ≈ 100 samples for each modulation. Numerical
values obtained are QPY LD = 6.1µC and Q̄B = 13.0µC (The
error bars represent the empirical dispersion obtained). Results
show that the model presented is in full agreement with
measurements within the experimental error.

Although LoRa is used as a case study, this characterization
can be easily applied to other radio technologies. In general,
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Fig. 3. Characterization of LoRa transmissions

the key issue is to be able to characterize the consumption of
a radio message, which will be used as an input parameter for
the next layer. As an example, in [29] and [30] can be found
a similar characterization for a Time Synchronized Channel
Hopping networks such as WirelessHART or IEEE802.15.4e.
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Fig. 4. Fitting LoRa spreading-factor.

2) Network activity characterization: After understanding
the contribution to the energy expenditure of each packet, we
are concerned with the amount of messages that are generated
during the lifetime of the network to guarantee its reliable
operation and to ensure the proper operation of the application.
In our approach, LoRa nodes organize in a multi-hop network
on which each node keeps track of several best connected
neighbors. All nodes in the network operate following a slotted
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structure and slot boundaries are kept closely aligned between
nodes.

This approach is similar to other Industrial Wireless tech-
nologies and, therefore, the presented use case can be extrap-
olated to most of the standard Industrial network technologies
[12], [13].

Due to the low data-rate and to reduce the power consump-
tion, nodes only exchange synchronization messages when
required, following an adaptive synchronization mechanism.
Basically, each node selects one time source parent in the
network to synchronize with and periodically the device aligns
its clock with it using a pair-wise communication. Typical
interval between synchronization packets is a value around 60
seconds if we assume crystals with a drift of 10ppm [31].
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Fig. 5. Influence of time between synchronization messages on device current
consumption.

According to this network description, we can determine the
average current to keep the network operational by applying
Eq. (2):

Ī
(NSF )
NET

∼= Q̄
(NSF )
MSG

TSY N
+ ĪB (2)

In Eq. (2) Q̄MSG represents average charge required per
packet for this particular radio technology. TSY N is the
average time between synchronization packets. This means
that the time between synchronization packet acts as a control
parameter for the network energy, giving a characteristic
functional dependency ĪNET∝1/TSY N (as shown in Fig. 5).
In turn, ĪB accounts for all components standby and quiescent
currents. It can be considered a constant value, and in general
can be neglected in front of the first member of the equation.
Additionally, when measuring in a real platform, a term related
with the RTOS management tasks is always present (depicted
as ISY S in Fig. 2). This term is a constant bias for all
measurements and will be accounted only once in the general
model.

3) Application Layer: For this particular case, data mes-
sages are only generated when an alarm is triggered, which
is an unlikely case. Therefore, the traffic generated by the
application layer can be considered negligible. In applications
that generate periodic data traffic, a similar expression to

Eq. (2) can be derived, on which a characteristic parameter
TDAT would account for the average time between data
messages.

B. Data acquisition

The charge drained to record one single sample can be
obtained by looking at the number of cycles required by the
ADC to capture the sample as well as the cycles required to
move the data to memory. Further details on this procedure can
be found in [29]. A second alternative is to follow an approach
similar to the network fitting presented, i.e, a semi-empirical
characterization of the acquisition subsystem.

Independently of the method, an estimation of the charge
per sample Q̄SMP is required. Thus, for each record 1 a
simple linear dependence with the number of samples acquired
is obtained. The average current of the acquisition block is
computed dividing the total charge NS ·Q̄SMP by the time
elapsed between consecutive records TRCD (Eq. 3), i.e. the
wake-up period of the application.

At this point, it is worth noting the following observation
regarding the energy control. While in many situations the
sampling period TS is determined by the filtering requirements
of the underlying physical process (e.g. AC noise filtering in
magnetic readings) the time between consecutive records is
scheduled from the application layer, thus providing a control
mechanism over the energy consumption at the expense of
increasing the monitoring interval time.

ĪACQ
∼= Q̄SMP ·NS

TRCD
+ ĪB (3)

C. Modeling Processing Energy Consumption

A vibration monitoring application is intended to analyze
the frequency content of the acceleration signals acquired from
a vibrating source. As such, a Fast Fourier Transform (FFT)
is typically used to find the dominant harmonics.

In such case, due to the computational complexity of the
algorithm, the FFT computation is the main contribution to
the processing energy consumption.

To come up with a valid model, it is important to identify the
functional behavior related to a selected control parameter. The
FFT implementation has a well known Nlog(N) complexity.
Then, it turns out that the associated energy cost in Eq. (4)
should be proportional to this Nlog(N) relation[29]. Thus,
when examining the proposed expression given by Eq. (4),
the fitting value Q̄OP can be interpreted as an estimation of
the average cost per operation, and it depends basically on the
technology of the used processor.

ĪPRC
∼= Q̄OP ·N · log(N)

TRCD
+ ĪB (4)

D. System Model

Once the main blocks are identified, the full model is built
by combining each individual block. In our case study this

1A record is defined as a sequence of NS continuous samples.
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model is expressed by Eq. (5), which combines the three
contributions (2), (3) and (4). A set of control parameters must
be selected in order to manage the energy consumption. It this
step, it is convenient to differentiate between technological
and applications parameters. In Eq. (4), constants α, β, γ and
δ only depend on the particular choice of sensor, MCU and
radio technologies respectively. Recalling the meaning from
the individual contribution, α can be interpreted as the charge
per sample Q̄S , β represents the cost per operation Q̄OP of
the particular µC, while γ is an estimator of the average
charge per message Q̄MSG. Finally, δ accounts for the system
management contribution ISY S . These constants can be easily
modified to evaluate alternative technologies.

In turn, NSF , TSY N , N and TRCD are application para-
meters that can be tuned in order to meet the power require-
ments. i.e., once fixed the technology dependent constants,
this set of parameters provides the mechanism to adjust the
device power consumption. The main parameters involved in
network consumption are NSF and TSY N , which are related
to the range of the communication and the time between
synchronization packets. Although both parameters can be
seen as with no-dependency between them, a low NSF (less
link budget) can affect the synchronization time requested
TSY N (due to packets loss). In this work, as stated in previous
section, we fix TSY N to 60 seconds, as an optimal value for
typical industrial components.

In terms of sensing and processing, two remarks should be
made. First, a record is defined as the process of waking up,
taking NS samples and computing an FFT to analyze them. We
assume that the number of points computed by the FFT and the
number of samples taken by the ADC are the same NS

.
= N .

This means that this parameter affects simultaneously the
energy contribution of both sensing and processing tasks.
Second, once the number of points to be sampled and analyzed
is fixed, the duty-cycled behavior of the application determines
the time between records as the determining factor of the
average power. Specifically, while the time between records is
increased, less power is consumed. Therefore, the time interval
between consecutive records determines the time scale for
power averaging.

ĪDEV =
αN

TRCD
+
β Nlog(N)

TRCD
+
γ 2NSF

TSY N
+ δ (5)

TABLE I
FITTING TECHNOLOGICAL PARAMETERS. (†FROM [29])

Contribution (Fit.) Parameter Value Units

Acquisition (QSMP ) † α 3.5 [µC]
Processing (QOP ) † β 0.3 [µC]
Network (Radio) (QMSG) γ 6.1 [µC]

Network (System) δ 0.1 [mA]

By correctly interpreting Eq. 5, application engineers will
be able to make better informed technology-related decisions
(both hardware and software) at the design stage, allowing a
reduction off the prototyping time which accelerates the go-
to-market of the product.

Fig. 6 presents a simulation obtained by applying Eq. (5))
to different network and recording period configurations. The
bars represent the contribution to the energy consumption
of the network, sampling and processing components; for
different network (spreading factor) and application (record
time) settings. Each contribution is computed considering 256,
512 and 1024 samples per record.
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As expected, asymptotic behavior due to the denominator
terms can be seen in both axes of Fig. 6. Holding the interval
time fixed, the overall energy consumption is reduced when in-
creasing the spreading-factor used in the radio communication.
However, the asymptotic decrease limits the amount of energy
that can be saved. At a certain point, reducing the spreading-
factor (or reducing in some way the energy consumed in the ra-
dio communications) does not significantly reduce the average
power. Analogously, as the recording interval increases, the
energy savings decrease. Hence, this graphical representation
serves as a tool to determine which of the parameters yields
the highest energy savings once optimized.

IV. HARVESTING DEVICE DIMENSIONING

Once the device power is characterized, a second step is
the dimensioning of the energy harvester according to the
application requirements. The idea behind harvesting dimen-
sioning is remarkably simple: in the very long term, the energy
scavenged from the medium ESCV (t∞) must be greater than
the energy consumed by the device EDEV (t∞) [32]. In
practical terms, however, this condition can be relaxed to a
more realistic expression:

P̄SCV ≥ P̄DEV (6)

Yet, in order to apply Eq. (6), two conditions must be satisfied.
First, the averaging time window must be long enough to deal
with all the short-term variability (running cycles), both at the
energy source and at the device side. Second, in a general case,
the instantaneous power supplied by the harvester PSCV (t)
is independent of the energy consumption rate PDEV (t),
and thus they may follow completely different patterns and
characteristic periods. The later, mandates a properly sized

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2015.2483750

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6 IEEE INTERNET OF THINGS JOURNAL

energy buffer to absorb the temporary asymmetries between
generation and demand [33][34].

In order to meet these two conditions an analysis of the
energy source and its variability are fundamental to understand
what are the limitations that energy availability imposes to the
application.

A. Analyzing the Energy Source

It is a well known fact that solar energy is available inter-
mittently. More concretely, solar irradiation is characterized
by a double periodicity: daily cycles (day-night) and seasonal
cycles (winter-summer). This double periodicity can be easily
appreciated in Fig. 7, where the monthly evolution of solar
irradiation in Los Angeles (California) is presented for the
2001-2010 period. This data is publicly available, and similar
information can be obtained for other locations [35]. Aside
from the monthly evolution, the same figure indicates the day-
night variations, which are represented in the vertical direction
for each specific month and split into slots of 1 hour.

To make this evolution understandable, data is projected in
two orthogonal directions. In the first one, daily irradiation has
been aggregated (the figure below the scale-colormap). This
plot shows the monthly evolution, i.e., the seasonal variations,
averaged per day, for the expected energy income. The second
one is a projection of the hourly power of every single
month in the period (right side). This figure captures with a
single snapshot the historic daily behavior of solar irradiation.
Obviously, some months have longer days than others, and
even the same month can see irradiation change from one day
to another; but the interruption of energy production at night
is inevitable.

In light of these patterns, this proposal handles the double
periodicity in two different ways: seasonal variations are ab-
sorbed by dynamically adapting the application to the expected
energy income, while daily energy over-production is stored in
a super-capacitor for powering the system at night. The next
two sections lay out the procedure in detail.

B. Harvester Sizing and Adaptive Operation

When the available energy is highly variable (as solar irradi-
ation is) the selection of a suitable combination of the harvester
size and application settings is complex, as the system should
be designed to stay alive even in worst case conditions. This
becomes especially relevant when the application needs to
dynamically adapt to new, non-predicted conditions, while still
remaining energetically self-sustainable.

Looking at the historic evolution of the averaged irradiation
(Fig. 7, bottom), the minimum expected value for the daily av-
erage power is 0.1 kW/m2, corresponding to the worst winter
period on the record 2. Based on this observation, and con-
sidering the efficiency of the selected solar panel technology
(typically ηPanel≈ 15−25% [36]) and the DC-DC converter
(ηdc≈ 80−85% for off-the-shelf low-cost technologies [37]),
it can be expected that the power production per area unit of
the system can be estimated in P̂≈0.8 mW/cm2. This value

2This value is roughly 10% of the power received with maximum irradiation

corresponds to ÎSCV =0.32 mA/cm2 once converted to 2.5V
(with the losses due to DC/DC conversion accounted for in
the efficiency factor ηdc).

With this value in mind, the next step is to understand
the current requirements of the application. Fig. 8 shows
the operational regions for different network configurations
(different schedules that can provide different levels of QoS
or bandwidth). Typically, the spreading-factor’s value is fixed
once the network has been deployed. Therefore, a more
suitable control parameter is the time between consecutive
measurements, which can be varied according to energy avail-
ability.

At this point, a key aspect to consider is the asymptotic
behavior of Eq. (5). Even when using the very high values
of TRCD, the offset term due to network maintenance and
system background functionality makes it almost impossible
to obtain further energy savings. This is the asymptotic limit
below 0.5 mA, which is noticeable in Fig. 8a. It is important
to understand that this value is a system limit fixed by
the technology used. Therefore, it determines the absolute
minimum size of the solar panel, meaning that the harvested
current must be above this value in worst case conditions.
This is a good example of the necessity for a system-wide
view in the wireless device’s design flow: a power condition
is imposed by radio technology and emerges as a mechanical
system constraint through the size of the solar panel.

Bearing in mind the minimum value needed to operate
the network, and recalling that expected current per unit are
is ÎSCV≈0.3mA/cm2, a small form-factor panel of 2cm2

guarantees a current of ISCV = 0.6 mA in worst case
irradiation periods. Then, when the input is beyond this value,
the system can keep track of the variations of the energy
scavenged and estimate the current income for the next cycle,
in order to operate in a more aggressive power mode according
to the season.

Following with the example, in Fig. 8a the gray areas repre-
sent the feasible zones that satisfy the sustainability condition
Eq. (6). In the figure, the device is configured in a low-
power mode during winter (I(min)

SCV ' 0.6mA). In this mode,
the device analyzes the state of the tower every 30 seconds,
which satisfies the sustainability condition for a current of
IDEV ≤ 0.6mA≤ ISCV (in the direction of top-left arrow).
In summer periods, when the expected incoming energy is
around 3 times higher (I(min)

SCV ' 1.8mA), the device can be
switched to high performance mode. In this mode, the device
takes a record every 5 seconds, which is also sustainable for
currents above IDEV ≤ 1.8mA≤ ISCV (bottom-right arrow).

Following a similar analysis, Fig. 8b shows the dependence
with the number of points of the FFT. Notably, working in
winter conditions, using 1024 points has a great impact on
the time interval between records. (TRCD changes from 5s
for FFT=256 to more than 20s for FFT=1024).

These examples illustrate how to address the problem of
sustainability by means of two different approaches, the inter-
val time between measurements and the numerical resolution,
both affecting the performance of the system in different ways.
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Fig. 7. Solar irradiation in L.A.City along the period 2001-2010.

C. Energy Buffer Sizing

As indicated in the previous section, the validity of Eq. (6) is
subject to a proper energy buffer dimensioning. Choosing the
capacity of the energy storing device can be accomplished by
a careful examination of the energy input and output patterns.
When the energy income to the system is available only
intermittently, the buffer size is determined by the amount of
energy required to operate the device during scarce scavenging
periods. In other words, the energy production above the aver-
age level during over-production periods (PSCV>P̄DEV ) has
to be buffered in order to power the device when production
declines (PSCV<P̄DEV ).

In our case, night intermittence is managed by temporally
buffering to a super-capacitor the over-production during the
central hours of the day. Super-capacitors support a virtually
unlimited number of charge and discharge cycles, therefore
making them particularly suitable for this application. One
of the drawbacks of super-capacitors is their relatively high
self-discharge ratio, but daily replenishment make this effect
negligible. In addition, super-capacitor technologies offer a
good trade-off between energy density and peak current, the
latter being desirable for radio transmissions [38].

For buffering purposes, worst case scenario occurs when
the device operate in high performance modes, because the
amount of energy to be stored to maintain the system operative
at night is required to be higher. So, in opposition to the sizing
method, it is important to determine the periods when the
maximum amount of harvested energy is expected.

Fig. 9 shows the historic irradiation from Fig. 7 mapped
onto the power generated by a 2cm2 cell (as measured after
the DC/DC regulator). In the high performance settings, the
average demand from the device is close to 4.5 mW (1.8mA
at 2.5V ). Daytime over-production is depicted with the light
grey area inside the maximum production (black-solid dots)
and the device demand (dashed-line). This area must be stored
for use during the under-production periods, indicated by the
dark grey area. In this example, the amount of energy to be
buffered is EBuff≈58mWh, which requires a 75F super-

capacitor [39]. Specifically, we use the Maxwell BCAP0100
with a capacity of 100F in 17cm3 (L=45mm d=22mm), used
at 75% of its capacity

This result demonstrates how solar harvesting and super-
capacitor technologies can be combined into a reduced form
factor that enables reasonably small perpetual devices.

V. CONCLUSION

This article addresses the convergence of energy scavengers
with industrial wireless sensing and actuating applications.
Through a representative application scenario for typical in-
dustrial settings, it proposes an analytical model as a tool
to facilitate the dimensioning and scavenger selection at pre-
deployment stages considering specific application require-
ments. This approach aims to provide concise answers to the
main concerns about energy harvesting and its suitability.

The presented method is applicable to a wide range of use
cases, and is defined by the following steps: 1) determine
the source of energy in your scenario; 2) determine the
duty-cycle and the magnitude of the available energy; 3)
simulate within the boundaries of the application variables; 4)
select a scavenger dimensioned accordingly to the available
energy and an initial estimation of the energy consumption
of the application; 5) optimize the application variables and
variability taking into account the selected scavenger; and 6)
dimension energy buffers to cope with dynamic energy peaks.

Therefore, given an industrial application using a wireless
industrial network, and knowing its radio technology, sampling
and processing requirements, an accurate estimation of energy
demands can be used to determine what scavenger and super-
capacitor is required to make it self-sustainable. Furthermore,
the parametrized model can be used to properly configure the
application, enable different modes of operation in case of
varying requirements, e.g., more energy during certain hours
may enable more data or processing.
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